Section 6.2: One-to-one functions; inverse functions
\#1-4: Determine if the functions are one to one by using the horizontal line test.

\#5-12: Use a graphing calculator to sketch a graph and determine whether the function is one to one or not.
5) $f(x)=2 x-5$
6) $g(x)=x+3$
7) $f(x)=x^{2}-3$
8) $k(x)=(x-3)^{2}+6$
9) $g(x)=x^{4}$
10) $k(x)=x^{4}-3$
11) $f(x)=x^{3}$
12) $h(x)=x^{3}-2$
\#13-18: Determine which of the functions are one to one. If a function is one to one find its inverse.
13) $f=\{(0,1)(1,4)(2,4)(3,5)\}$
14) $g=\{(3,2)(4,5)(-3,4)(1,5)(0,6)\}$
15) $\mathrm{h}=\{(0,3)(5,1)(7,11)(9,-3)\}$
16) $\mathrm{k}=\{(-3,4)(-5,6)(9,-3)(4,0)\}$
17) $m=\{(0,2)(2,3)(3,5)\}$
18) $n=\{(1,1)(2,2)(3,4)(5,5)\}$
\#19-26: The graph of a one to one function " $\mathrm{f}(\mathrm{x})$ " is given.
Draw the graph of the inverse function $f^{-1}(x)$

Section 6.2: One-to-one functions; inverse functions
\#27-36: Each of the following functions is one to one. Perform the following:
a) Find the inverse of each function, and express it using appropriate notation.
b) Check your answer by showing that $\left(f \circ f^{-1}\right)(x)=\mathrm{x}$ or $\left(f^{-1} \circ f\right)(x)=\mathrm{x}$
c) Use your calculator to graph the function and its inverse and the line $y=x$ on the same coordinate axis. This is just a visual test to confirm you have calculated the correct inverse.
27) $f(x)=2 x-4$
28) $f(x)=3 x-6$
29) $f(x)=\frac{x-2}{3}$
30) $f(x)=\frac{2 x-5}{7}$
31) $f(x)=\frac{2}{x}$
32) $f(x)=\frac{3}{x}$
33) $f(x)=\sqrt[3]{x-4}$
34) $f(x)=\sqrt[3]{x-2}$
35) $f(x)=x^{3}+2$
36) $f(x)=x^{3}-3$

